기본 콘텐츠로 건너뛰기

라벨이 Cryptography인 게시물 표시

Cryptocurrency

Cryptocurrency 블록체인 블록 : 무엇이든 기록할 수 있는 공간으로 (비트코인은 transzction 거래를 넣는다) 지문과 같은 고유의 식별 값을 가지고 있다. 블록 + 체인 : 블록은 추가 생성되면 이전 블록과 연결되어 이전 블록의 식별 값을 참고하여 자신의 식별 값을 생성하게 된다. 이와 같은 방식으로 추가된 블록 간의 연결성을 체인이라 한다. 이와 같이 블록체인은 정보를 저장하는 방법으로 의료기록과 같이 조작이 불가하게 관리하기 위한 데이터베이스이다. 따라서 저장은 가능하지만 삭제하는 것은 불가능한 데이터베이스( Append only )로 이해할 수 있다. 암호화폐 화폐 : 정부를 통해 공인된 거래수단으로 정부의 신뢰도에 따라 화폐의 가치도 결정된다. 암호 : 수학을 이용하여 메시지의 뜻을 감추는 기술로 감춘 정보를 복구하는 방법을 모르는 사람에게 정보를 노출되지 않게 한다. 암호화폐 : 수학에 대한 신뢰를 기반으로 한 화폐로 정부를 포함한 제 3자가 신뢰의 수단이 아니므로(과학기반 화폐) 베네수엘라와 같이 정부의 실패가 화폐에 영향을 미치는 일이 없는 장점이 있다. 화폐 유한함 채굴이 완료 되면 더 이상 늘어날 수 없다. (Ex. 비트코인, 금) 하지만 정부에서 발행하는 명목화폐의 경우 무한정 발행이 가능하며 이는 인플레이션(돈이 많아져 가치가 하락)을 초래할 수 있다. 교환 가능 내가 가진 화폐와 다른 사람이 가진 화폐(동일한 원화는 동일한 가치)를 교환 가능하며 이는 화폐가 오래되었다고 해서 더 높거나, 낮지 않다. 분할성 상품 거래 시 1000원을 500원으로 분할하여 교환할 수 있다. 내구성 시간이 오래되었다고해서 가치가 변질되면 안된다. (1년 후에도 10년 후에도 동일한 금) 양도 가능성 전달이 편리해야한다. 종이화폐와 암호화폐는 이에 충족하지만 금은 충족하지 못한다. 안정성 가치가 안정적이다. 비트코인은 이를 충족하지 못하므로 좋은 화폐가 아니다.

Electronic certificate

Electronic certificate 전자 인증서 의의 공개 키 암호 방식이나 전자 서명에선 공개 키가 정말로 통신하고자 하는 상대인지 보안되지 않는다는 문제가 있다. 예를 들어 A가 B에게 공개 키를 보낼 때, X가 공개 키를 바꿔 전달해도 B는 눈치채지 못할 수 있다. 전자 인증서를 이용하면 공개 키 작성자가 누구인지를 보증할 수 있다. 동작 방식 A는 공개 키 PA와 비밀 키 SA 쌍을 가지고 있으며 공개 키 PA를 B에게 보내려고 한다. A는 먼저 인증 기관(CA : Certification Authority)에 공개 키 PA가 자신의 것임을 나타내는 인증서 발행을 의뢰한다. 인증 기관은 전자 서명을 관리하기 위한 조직으로 많은 인증 기관이 존재한다. 따라서 정부나 외부 기관을 통해 감사를 받은 신뢰할 수 있는 기관을 이용하는 것이 좋다. 인증 기관은 자신이 준비한 공개 키 PC와 비밀 키 SC를 보유하고 있다. A는 공개 키 PA와 메일 주소를 포함한 개인 정보를 준비해서 인증 기관에 보낸다. 인증 기관은 확인을 완료하면 인증 기관의 비밀 키 SC를 이용해서 A의 데이터로부터 전자 서명을 작성하고 전자 서명과 데이터를 하나의 파일로 만들어 A에게 보낸다. (이 파일이 A의 전자 인증서가 된다.) A는 공개 키 대신 전자 인증서를 B에게 보낸다. B는 전달 받은 인증서에 적힌 메일 주소가 A의 것인지 확인한다. B는 인증 기관의 공개 키를 취득한다. 인증서 내의 서명이 인증 기관의 것인지 검증한다. 인증서의 서명은 인증 기관의 공개 키 PC로만 검증할 수 있다. 즉, 검증 결과에 문제가 없다면 이 인증서는 인증 기관이 발행한 것이라는 것이 보장된다. 인증서가 인증 기관에서 발행된 것이고 A의 것임이 확인되었으면 인증서에서 A 공개 키 PA를 추출한다. (A의 공개 키 B에게 전달 완료) 검증 악의를 지닌 X가 A로 위장하여 B에게 공개 키 PX를 전달하려고 하지만 B는

Electronic signature

Electronic signature 전자 서명 전자 서명이란 전자 서명이란 메시지 인증 코드가 가지는 인증과 변조 검출 두가지 기능에 부인방지를 추가한 것이다. 메시지 인증 코드는 메시지에 MAC을 부여하므로 메시지 전송자가 키 소유자임을 증명하기 위한 구조이다. A가 메시지와 MAC 및 MAC 생성을 위해 사용한 키를 B에게 보낸다. B는 전달 받은 메시지와 키를 이용하여 MAC을 생성하고 A에게 전달 받은 MAC과 일치하는 지 확인한다. 이것으로 전송자가 A인 것과 메시지가 변조되지 않았음을 확인할 수 있다. 하지만 메시지 인증 코드는 공통 키를 사용하는 구조이므로 키를 가진 누구나가 메시지 전송자가 될 수 있다. 예를 들어 A가 B에게 메시지를 전송한 후에 해당 메시지는 B가 임의로 작성한 것이라 주장할 수 있다. 또한 공통 키를 사용하므로 A가 B 이외의 사람에게 메시지를 보내기 위해서는 다른 키를 준비해야하는 문제가 있다. 전자 서명 구조에서는 MAC이 아닌 전송자만 작성할 수 있는 전자 서명 이라는 데이터를 이용하여 메시지 작성자가 누구인지 식별할 수 있다. 이를 전자 서명이라 한다. 특징 부인 방지 Sig 라는 전자 서명은 A만 작성할 수 있다고 할 때, A가 전자 서명이 첨부된 메시지를 전송한 경우, 전송자가 A인 것이 보장된다. 메시지를 맏은 B는 전자 서명이 A의 것인지 확인할 수 있지만 동일한 전자 서명을 만들 수는 없다. 키 분배 문제 메시지 인증 코드와 달리 공통 키를 사용하지 않으므로 A는 동일 전자 서명을 사용해 불특정 다수와 통신할 수 있다. 전자 서명 작성 시 공개 키 암호 방식 순서를 응용한다. 동작 흐름 공개 키 암호 방식과 반대로 전자 서명은 비밀 키로 암호화하고 공개 키로 복호화하는 방식으로 비밀 키를 가진 A만 암호화할 수 있지만, 공개 키를 이용해서 누구나 복호화할 수 있는 암호문이 작성한다. 암호로서는 의미가 없지만, 이 암호문은 비밀 키를

MAC(message authentication code)

MAC(message authentication code) 메시지 인증 코드 메시지 인증 코드란 메시지 인증 코드는 인증과 변조 검출 두 가지 기능을 가지는 구조이다. 메시지 인증 코드가 필요한 상황을 생각해보자. A가 B에게서 상품을 사기 위해 상품번호 abc 를 전달하고자 한다. 이를 위해 A는 공통 키 암호 방식으로 테이터를 암호화한 후 안전한 방법으로 B에게 키를 보낸다. (키 교환은 공개 키 암호 방식 또는 디피 헬만과 같은 키 교환 프로토콜을 사용한다.) B는 전달 받은 키를 이용하여 암호문을 복호화 후 원 데이터인 abc 를 얻을 수 있다. 변조 가능성 A가 B에게 암호를 보낼 때, A가 B에게 전송하려고 한 암호문을 X가 중간에서 변조했다면 B는 변조 여부를 알아차리지 못하고 잘못된 상품 번호를 처리하게될 가능성이 있다. 메시지 인증 코드 - MAC(Message Authentication Code) 메시지 인증 코드(이하 MAC이라 칭한다.)를 사용하여 이러한 변조에 대응할 수 있다. MAC는 MAC 생성 키와 암호문을 특수한 연산을 통해서 생성한 값을 말한다. MAC 작성 방법 MAC 작성 방법에서는 HMAC, OMAC, CMAC 등이 있으며 HMAC이 주로 사용되고 있다. 동작 흐름 A는 MAC 생성을 위한 키를 만들고 안전한 방법으로 B에게 전달한다. A는 암호문과 MAC 생성 키를 이용하여 MAC을 만든다. A는 B에게 작성한 MAC과 암호문을 보낸다. B는 A와 마찬가지로 암호문과 MAC 생성 키를 사용해서 MAC을 작성한다. B는 직접 작성한 MAC과 A에게서 받은 MAC 값이 일치하는 지 비교하여 메시지 변조 여부를 확인한다. 만약 악의를 가진 X가 암호문을 변조했다면 B는 암호문으로부터 MAC을 생성 후 일치 여부를 확인하여 불일치 시 A에게서 전달 받은 암호문과 MAC을 파기하고 재전송을 요청한다. X는 MAC을 계산하기 위한 키를 가지고 있지 않아서

Diffie-Hellman

Diffie-Hellman 디피 헬만 키 교환 방법 디피 헬만 키 교환 법은 안전하게 키를 교환하기 위해 고안된 기법이다. 두 키를 합성하는 특수한 방법이 있다고 가정해보자. P 키와 S 키를 합성하여 P-S 키를 생성한다면 생성된 키는 다음 두 가지 특징을 가진다. P와 P-S 키를 이용하여 S 키 추출은 불가하다. 즉, 합성은 가능하지만 분해는 할 수 없다. 합성된 키로 또 다른 합성 키를 만들 수 있다. 동작 흐름 A가 P 키를 생성한다. (P 키는 공개되어도 무방하다.) A가 B에게 P 키를 전달한다. A와 B는 각각 비밀 키 SA와 SB를 생성한다. (이 때 SA와 SB는 제 3자에게 노출되어서는 안된다.) A는 P 키와 SA 키를 합성하여 P-SA 키를 생성한다. B는 P 키와 SB 키를 합성하여 P-SB 키를 생성한다. A가 B에게 P-SA 키를 전달한다. B가 A에게 P-SB 키를 전달한다. A는 비밀 키 SA와 B에게서 받은 P-SB 키를 합성하여 새로운 SA-P-SB를 생성한다. 동일하게 B도 비밀 키 SB와 P-SA 키를 합성하여 새로운 P-SA-SB를 생성한다. A와 B는 모두 P-SA-SB 키를 가지게 된다. 논리 인터넷으로 전송되는 P, P-SA, P-SB 키는 X가 훔쳐볼 수 있다. 하지만 X가 얻은 키로는 P-SA-SB를 합성할 수 없다. 또한 분해가 불가하므로 비밀 키 SA와 SB를 얻을 수 없다. 따라서 P-SA-SB 키를 만들 수 없으므로 이 키 교환 방식은 안전하다고 볼 수 있다.

hybrid cryptosystem

hybrid cryptosystem 하이브리드 암호 방식 하이브리드 암호 방식이란 공통 키의 키 분배 문제와 공개 키의 속도 문제를 해결하기 위해 데이터 암호화는 처리 속도가 빠른 공통 키 암호 방식으로 수행하고 키 관리는 공개 키 암호 방식을 이용하여 키 분배 문제를 해결한다. 동작 흐름 A가 B에게 데이터를 전달한다고 가정해보자. A는 처리 속도가 빠른 공통 키 암호 방식으로 데이터를 암호화한다. B는 공개 키와 비밀 키를 생성하고 A에게 공개 키를 전달한다. A는 B에게서 전달 받은 공개 키를 이용하여 키를 암호화하고 암호문을 B에게 전달한다. B는 비밀 키를 이용하여 키 암호문을 복호화한다. B는 복호화한 키를 이용하여 데이터 암호문을 복호하하여 원 데이터를 획득한다. 사용 예시 SSL 프로토콜

Public-key cryptosystem

Public-key cryptosystem 공개 키 암호 방식 공개 키 암호 방식이란 암호화와 복호화에 서로 다른 키를 사용하는 방식으로 암호화에 사용하는 키를 공개 키, 복호화에 사용하는 키를 비밀 키라고 한다. 공통 키 암호 방식에 비해 공개 키 암호 방식은 암/복호화 시간이 오래 걸리는 경향이 있다. 공개 키 암호 계산 방법 RSA 암호 타원곡선 암호 동작 흐름 A가 B에게 데이터를 전송하고자 한다고 가정해보자. 데이터를 전달 받을 B가 공개 키와 비밀 키를 생생해 공개 키를 A에게 전달한다. A는 B에게 전달 받은 공개 키를 사용해서 데이터를 암호화하고 B에게 암호문을 전달한다. B는 전달 받은 암호문을 비밀 키로 복호화하여 원 데이터를 획득한다. 특징 키 분배 방식 문제 해결 X가 공개 키와 암호문을 훔쳐본다고 하여도 공개 키로는 암호문을 복호화할 수 없으므로 원 데이터를 획득할 수 없다. 이와 같이 공개 키 암호 방식에서는 키 분배 방식 문제가 발생하지 않는다. 다수 간 데이터 교환 용이 불특정 다수 간의 데이터 교환이 쉽다는 장점이 있다. 공개 키는 노출되어도 상관없으므로 B가 공개 키를 인터넷 상에 공개해두었다고 한다면 B에게 데이터를 전송하고자 하는 다수의 사람들이 각자 B가 공개한 공개 키를 가져와 데이터를 암호화하여 B에게 전달하고 B는 보관 중인 비밀 키로 데이터를 복호화하면 되므로 데이터를 전송하는 상대방 모두가 키를 가지고 있을 필요가 없다. 또한 데이터를 전달 받는 측에서 비밀 키를 노출되지 않게 관리하면 되므로 안전성이 높다. 문제점 긴 암/복호화 시간 암호화 및 복호화 시간이 오래 걸린다. 따라서 데이터의 연속적 교환이 필요한 구조에서는 부적합하다. 해결책 하이브리드 암호 방식) 공개 키 신뢰 문제가 발생한다. A가 B에게 보내는 데이터를 훔쳐 보고자하는 X가 자신의 공개 키와 비밀 키를 생성 후 B가 A에게 공개 키를 보낼 때, X 자신의

Symmetric-key cryptosystem

Symmetric-key cryptosystem 공통 키 암호 방식 공통 키 암호 방식이란 공통 키 암호 방식은 암호화와 복호화에 동일한 키를 사용하는 암호 방식이다. A가 B에게 데이터를 전달하고자 할 때, 원 데이터를 키로 암호화한 후 B에게 전달하면 X에게 전송 데이터가 노출된다 하여도 원 데이터를 보호할 수 있다. A는 원 데이터를 키로 암호화하여 암호문을 B에게 전달 --> B는 전달 받은 암호문을 A의 키로 복호화하여 원 데이터 획득 공통 키 암호 방식의 계산 방법 시저 암호 (Caesar cipher) AES (Advanced Encryptioin Standard) DES (Data Encryption Standard) OTP (One Time Pad) 키 분배 문제 문제점 X가 암호문을 훔쳐볼 수 있다고 가정할 때, B가 A의 키를 가지고 있지 않다면 A는 특정 수단을 사용해서 B에게 키를 전달해야 한다. 인터넷을 통해서 전달한다면 X가 키를 획득하여 암호문을 복호할 위험이 있다. 이렇게 키 전달 방법에 문제가 있다는 것을 알 수 있다. 만약 키를 암호화한다 하여도 키 암호화에 사용한 키를 전달해야 하므로 동일한 문제에 직면하게 된다. 공통 키 암호 방식에서는 키를 안전하게 전달하는 방법에 문제가 발생하고 이를 키 분배 문제라고 한다. 해결책 키 교환 프로토콜 이용 공개 키 암호 방식 이용

hash

hash 해시 함수 해시 함수란 해시함수란 데이터를 고정 길이의 불규칙적인 숫자로 변환하는 함수이다. 이 때 출력되는 값을 해시 값이라 한다. 해시 값은 보통 16진수 형태로 출력되지만 내부에서는 2진수로 관리되고 있으며 컴퓨터 내부에서 수리 연산을 수행하고 있다. 특징 출력하는 값의 길이가 바뀌지 않는다. 예를 들어 SHA-1에서는 20 바이트로 고정된다. 이는 입력되는 데이터의 크기와 무관하게 유지된다. 입력이 동일하면 출력도 반드시 동일하다. 데이터의 유사도와는 무관하게 1 비트라도 다른 데이터라면 그 출력은 판이하게 다르다. 전혀 다른 데이터를 입력해도 동일한 해시 값이 출력될 확률이 존재한다. 이를 해시 값 충돌이라 한다. 해시 값으로 원 데이터를 역산하는 것은 불가능하다. 데이터의 흐름은 단 방향으로 이것은 암호와의 차이점이다. 해시 연산은 비교적 간단하다. 사용 예시 메시지 인증 코드 해시 테이블

cryption-basic

cryption-basic 암호의 기본 의의 A가 B에게 인터넷을 이용하여 데이터를 전달하고자 할 때 그냥 전달항다면 악의를 가진 제 3자가 훔쳐볼 가능성이 있다. 그러므로 암호화한 암호문을 전달하고 전달 받은 B는 이를 복호화하여 원본 데이터를 얻는다. 컴퓨터에서 암호란 컴퓨터는 데이터의 형식과 무관하게 모든 데이터를 0과 1로 구성되는 2진수로 관리한다. 이를 특정 연산을 통해서 컴퓨터가 해석할 수 없는 숫자 형태로 변경하는 것을 의미한다. 암호 수치 연산에는 키를 이용하는 데, 키는 숫자로 구성되어 있으며 암호를 위한 암호키, 복호를 위한 복호키가 있다. 예시 XOR을 이용한 구체적 예시를 살펴보자. XOR은 A ⊕ B = C A \oplus B = C A ⊕ B = C A = B ⊕ C A = B \oplus C A = B ⊕ C 가 성립되는 특징이 있다. 이를 암/복호에 적용하면 다음과 같다. 암호 : O r i g i n a l D a t a ⊕ K e y = C r y p t o g r a m Original Data \oplus Key = Cryptogram O r i g i n a l D a t a ⊕ K e y = C r y p t o g r a m 복호 : C r y p t o g r a m ⊕ K e y = O r i g i n a l D a t a Cryptogram \oplus Key = Original Data C r y p t o g r a m ⊕ K e y = O r i g i n a l D a t a

security-overview

security-overview 보안 개요 도청 대응 방안 : 암호화 기술 A가 B에게 메시지를 전송할 때 경로 상에 있는 X가 메시지 내용을 훔쳐볼 가능성이 있다. 위장 대응 방안 : 메시지 인증 코드, 전자 서명 A가 B에게 메시지를 전달했다고 생각하지만 X가 B로 위장하여 전달받았을 가능성이 있다. B가 A에게 메시지를 받았다고 생각했지만 X가 A로 위장하여 전달했을 가능성이 있다. 변조 대응 방안 : 메시지 인증 코드, 전자 서명 A가 B에게 메시지 전달을 성공했을지라도 도중에 X가 메시지 내용을 변경했을 가능성이 있다. 사후 부인 대응 방안 : 전자 서명 B가 A에게 메시지를 받았다고 생각하지만 A가 악의적으로 이를 부인할 가능성이 있다.

White-box-Cryptography

화이트박스 암호 기술 본 내용은 ETRI의 화이트박스 암호 및 응용 기술 동향 분석 문서를 참고하여 작성한 글입니다. 등장 배경 지금까지 암호 알고리즘은 동작하는 단말과 단말의 신뢰를 토대로 제 3자가 해독할 수 없게 하는 것을 목표로 만들어졌다. 그러나 사용자가 사용하는 단말에 심어진 악성 프로그램이나, 공격자가 공격을 위해 암호화 통신에 참여할 수 있으므로 통신하는 양쪽을 신뢰할 수 없는 것이 현실이다. 이에 TPM, 스마트카드와 같은 하드웨어를 활용한 대안이 제시되고 있으나 비용증가 및 설치의 어려움의 문제를 안고 있다. 이를 해결하고자 등장한 화이트 박스 암호 기술은 소프트웨어만으로 암호 키를 안전하게 보관할 수 있고, 신뢰할 수 없는 단말에서 암호화 알고리즘이 실행되더라도 암호 키가 드러나지 않도록하는 기술이다. 암호 기술 AES 화이트박스 암호를 활용하여 기본 원리와 동작 메커니즘을 알아보자. 화이트 박스 암호 원리 암호 키가 신뢰할 수 있는 장치에서 관리된다고 가정했던 기존의 암호 메커니즘과 달리 화이트박스 암호 메커니즘에서는 끝단의 장치를 신뢰하지 않고 암호 키를 암호 알고리즘에 섞어 암호 키를 쉽게 볼 수 없게 하였다. 즉, 화이트박스 암호는 알고리즘을 큰 룩업테이블로 만들고 그 안에 암호 키를 암호 알고리즘과 뒤섞인 상태로 숨겨둠으로써 내부의 동작을 분석하더라도 암호 키를 쉽게 유추하지 못하도록 하는 기법이다. 암호 알고리즘을 하나의 큰 룩업테이블로 만들면 크기가 지나치게 커지므로, 분리하되 중간 값이 노출되지 안도록 인코딩과 디코딩을 수행한다. 인코딩 과정( )과 디코딩 과정( )이 별도의 테이블에서 계산되므로 중간 값이 노출되지 않고 원래 암호화 동작( )만 수행하는 결과와 동일하다. 안전성( ) 과정이 추가되기 때문에 동일한 암호 키를 사용하더라도 AES를 이용한 암복호화 결과와 화이트박스로 구현된 AES를 이용한 암복호화 결과는 차이가 있다. 룩업테이블 순람표(順覽表